Computational Foundations
of
Basic Recursive Function Theory*

Robert L. Constable
Scott Fraser Smith

88-904
March 1988

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*This work was supported in part by NSF grants CCR8502243 and DCR8303327.

Computational Foundations of Basic Recursive Function Theory*

Robert L. Constable and Scott Fraser Smith
Cornell University

Abstract

The theory of computability, or basic recursive func-
tion theory as it is often called, is usually motivated
and developed using Church’s Thesis. Here we show
that there is an alternative computability theory in
which some of the basic results on unsolvability be-
come more absolute, results on completeness become
simpler, and many of the central concepts become
more abstract. In this approach computations are
viewed as mathematical objects, and the major theo-
rems in recursion theory may be classified according
to which axioms about computation are needed to
prove them.

The theory is a typed theory of functions over the
natural numbers, and there are unsolvable problems
in this setting independent of the existence of index-
ings. The unsolvability results are interpreted to show
that the partial function concept, so important in
computer science, serves to distinguish between clas-
sical and constructive type theories (in a different way
than does the decidability concept as expressed in the
law of excluded middle). The implications of these
ideas for the logical foundations of computer science
are discussed, particularly in the context of recent in-
terest in using constructive type theory in program-
ming,.

1 Introduction

It is widely believed that there is one absolute notion
of computability, discovered in the 30’s by Church,
Kleene, Turing, Godel and Post and characterized by
proofs that various models of computation (e.g., Tur-
ing machines and random access machines) give rise
to the same concept, as well as by a belief in Church’s
Thesis, which in turn leads to a well-developed the-
ory of unsolvability[8]. This standard theory accepts

*This work was supported in part by NSF grants
CCR8502243 and DCR8303327

Church’s Thesis, and in Roger’s book[18] it is explic-
itly used to develop the theory. We want to challenge
the assumption that this is the only acceptable view.

We have discovered through our attempts to pro-
vide a formal foundational theory for computer
science[4,5,19] that there is an interesting, perhaps
compelling, alternative to the standard theory. The
goal of this paper is to explain this alternative.

One of the requirements for a theory of the kind
we imagine is that it be adequate to explain all of
the basic notions of computation and, where appro-
priate, relate them to basic notions of mathematics.
So it should explain algorithms and functions, data
types and sets, computations, resource expenditure,
unsolvability, etc. It should also provide the rules to
settle what is true about these basic concepts. We
call such theories foundational.

In attempting to design a foundational theory of
computation, we found that specific computing mod-
els and their properties are not a suitable basis. Such
properties depend on specific discrete data types,
such as natural numbers or strings, and it is not
clear how to generalize them to other data types while
preserving their essential character. The operational
models of computability, say RAM’s (random access
machines), specify too much irrelevant and ad hoc
detail. Some abstract approaches[10,21,22] take par-
tial functions to be indexable, which is not justified
on a priori grounds; others are too abstract to be of
much relevance to computation. So we had to look
elsewhere for the basis of a computation theory. A
natural place to look is at a foundational theory for
mathematics which can be interpreted computation-
ally, such as a type theory over the natural numbers.
In this setting the notion of an indezing is an enumer-
ation of the class of partial functions. It is consistent
to affirm or deny such indexings. The surprising re-
sult is that an interesting notion of unsolvability may
be conceived even if we deny the existence of index-
ings.

2 A theory of computing

2.1 Nature of the theory

Although the concept of an algorithm is central, we
treat it as a meta-notion in this theory. Two algo-
rithms are equal only if they have the same “struc-
ture”, but we do not formalize either algorithm or
this equality in the object theory here, although we
consider an extension to accomplish this in section
4.4. We represent in the theory those mathematical
objects that algorithms compute, numbers and func-
tions; if f and g compute functions then as functions
they are equal precisely if f(a) = g(a) for all a in the
domain of f and g. For simplicity and for comparison
to the standard theories, we have three base types, N,
the nonnegative integers 0,1,2,...; 1, the type with
one element; and 2, the type with two elements. The
theory is higher order in that if S and T are types,
then so is S — T, the type of all computable functions
from S into T. S is the domain type and T the range
type of these functions.

The types defined above are basic; in addition, as-
sociated with each type T is it’s “bar type”, denoted
T. Intuitively T represents the computations of el-
ements of type T treated as equal if they yield the
same result. But it is not necessary to construe bar
types as computations, as will be seen in the seman-
tics section below.

It is significant that the bar types are defined af-
ter the basic types. We first understand the ordinary
mathematical objects, then we come to understand
computations of them. This means in the case of
functions, for instance, that we understand total func-
tions before we understand the partial functions.

2.2 Possible interpretations of the
theory

A theory of the kind presented here can be under-
stood at a foundational level, and it makes sense to
regard the axioms as the final arbiter of meaning.
This is the approach taken in ITT[15] and Nuprl[4].
It is also possible to provide a concrete computa-
tional semantics for the theory based on relations
on the terms, in particular by defining a relation
s «—t to mean that ¢t evaluates to s, and then defin-
ing type membership and equality using this notion
of computation[l]. We give such an interpretation
in section 2.5 below. Although the theory is consis-
tent with respect to such models, we do not mean to
suggest that a computation theory must be based on
concrete notions. It is also sensible to interpret this
theory over an intuitive and abstract constructive the-

ory of functions and types (or sets). The basic con-
cept is that of a mental construction. On such an ac-
count, the notion of algorithm, computable function,
and type are open-ended. This theory is consistent
for such a semantics as well.

2.3 The syntax

The syntactic categories are variables, terms, types,
formulas and rules.

If r,s,t, f are terms and z is a variable,
we may construct the terms

0,1,2,... the numerical constants,

Az.t an abstraction,

s(t) application,

s;t composition,

suce(r) successor,

pred(r) predecessor,

zero(r; s; 1) a decision term, and

fiz(f) the fized point term.
Associated with terms are the base types

N, the natural numbers,

1, the unit type,

2, the boolean type,

and if S and T are types, then

S—T the function space, and
S the bar type,

are also types, provided that S itself is not a bar type
in the second clause.
formulas will include these atomic formulas:

teT type membership,
s=teT equality over type T,
t| convergence, and

tt divergence.

We will also allow the ordinary connectives A & B,
AVB, A= B,~A,V&:T. A, 32:T. A (and, or, implies,
not, for all and there ezist respectively). We allow the
possibility of further formulas.

2.4 The rules

There is a collection of rules for typing, computing,
and reasoning, but for space considerations we explic-
itly mention here only the fixed point rule:

ViET—T. fir(f) €T.

In this paper we will use the computational semantics
defined next as the justification for the proofs that
follow, although these proofs may also be carried out
in an axiomatic setting[3,19].

v «—t is defined as:

ne—n where n is 0,1,2,...
Az.b— Az.b
v — succ(a) iff n — a and n plus one is v

v — pred(a) iff n — a and n minus one is v
v « zero(a; b;c) iff n—a and ifnis 0
then v — b else v —¢

v « a(c) iff Az.b — a and v « b[c/z]
v — fiz(f) iff v — f(fiz(f))
ve—ab iff al and v — b

Figure 1: Evaluation

2.5 The computational semantics

A precise semantics can be given for this theory by
defining a reduction relation and then inductively
classifying terms into types based on their values. Let
v — t mean that term ¢ reduces to term v (a value)
by a sequence of head-reductions. This relation is
operationally defined in figure 1. Note that the only
possible values in this computation system are num-
bers and lambda terms. For example, letting F' be
Af. Az zero(z; 0; f(pred(z))), fie(F)(1) reduces as fol-

lows:

Az.zero(z; 0; fie(F)(pred(z)))(1)
zero(1; 0; fir(F)(pred(1)))
fie(F)(pred(1))

Az.zero(z; 0; fie(F)(pred(z)))(pred(1))
zero(pred(1); 0; fir(F)(pred(pred(1))))
3"0(0; 0; fie(F)(pred(pred(1))))

Therefore, 0 — fiz(F)(1).
Define t| as 3s.(s < t) and t1 as —(t]).

Definition 1 Define s =t € T for s and t closed
terms by induction on types as follows:

s=teTiff

if T is 1, then
0—sand 0—t
if T is 2, then
be—s and b—1t for b either 0 or 1.
if T is N, then
n s and n —t for some n one 0f0,1,2,...
if T is A— B,then
Az.by — s and Ay.by — t and
Vtermsa; andaz € A, a1 =az; € A
implies b1[a1/z] = bz[az/y] € B.
if T is A and A is not a bar type, then
(sl ifft]) and s| implies s =t € A.

We let ¢t € T abbreviatet =t € T.

The rules of the theory are provably sound under
this semantics[19], but since we are not providing the
rules here, we rely directly on the semantics in the
proofs that follow. Because of this it is perhaps useful
to notice a few properties of definition 1:

Theorem 1 For all types T,
(i)s=teT=>t=s€T
(ii))s=teT&t=ueT=>s=ueT.

Theorem 2 For all types T,
teT&u—t&u—s=>t=s€T.

a = b € N means a and b both evaluate to the same
natural number, say n. Az.b € A — B means for
all @ and a’ that are equal members of A, b[a/z] and
b[a’/z] are equal members of B. These functions thus
behave as mathematical functions should: they map
equal arguments to equal values.

3 Basic results

3.1 Overview

Our plan for this section is to examine certain basic
concepts and results from recursive function theory
over the natural numbers, say as presented in [18,20],
and to find analogues of them in the theory of section
2. We start with undecidability results, then look at
analogues of recursively enumerable sets, and then of
reduction and completeness.

The unsolvability results are particularly easy to
understand in this theory. We can argue that it is not
possible to solve the “halting problem” for functions
f € N — N, say for specificity the problem “does
f(0) halt?” One way to express this problem is to
notice that for every such f, f(0) belongs to N. So we
are equivalently asking for any computation ¢t € N,
whether we can tell if ¢ halts, that is, if there is a
function h € N— 2 such that h(t) = 1 iff ¢ halts.
The answer is no, because if we assume that h exists,
then we can define the function

d = fiz(Az.zero(h(z); 1;1)) € N,

where 1 is some element of N known to diverge such
as fiz(At.t). d € N follows by the fixpoint rule be-
cause the body is in the type N — N. By computing
the fiz term, we have d = zero(h(d);1;1) € N. If
h(d) = 0, then d should diverge, but in fact d = 1; so
it converges, and we reach a similar contradiction if
h(d) = 1. So the assumption that h exists leads to a
contradiction.

There is nothing special about N in the argument
except that there is an element such as 1 € N. So

the argument in general applies to any type T with
some tg € T. If we assume there is h € T — 2 such
that h(¢) = 1 iff t converges, then we may define

d = f(Az.zero(h(z); T;t0)) € T.

The argument depends essentially on the self-
referential nature of fiz(f), which has the type T
where f is of type T — T. This simple unsolvability
argument cannot be valid in a classical type theory
which takes A— B to denote the type of all functions
from A into B, because in that case there surely is
a function T — 2 solving the halting problem. This
argument thus also shows that the constructive type-
theoretic notion of partial function differs in some
fundamental way from the classical notion.

In this type-theoretic setting we can establish other
unsolvability results by reduction, and a version of
Rice’s Theorem, which summarizes these results, can
be proved.

We consider any subcollection of terms in a type
T to be a class of terms of T. In formal language
theory, the concept of an acceptable set is important;
that 'idea is captured here by saying that a class Cr
over a type T is acceptable iff C1 consists of those
values on which a partial function with domain T
converges. We can define a kind of complement of an
acceptable class Cr as being those values on which a
partial function with domain T diverges. A complete
acceptable class may be defined, and it is surprising
that in this context, any nontrivial acceptable set is
complete. This is essentially a consequence of the
extensional equality of bar types.

3.2 Classes

Many of the theorems in the paper are about classes
of elements over a type. For example, we consider the
class K of all convergent elements of N; this is written
as {z:N| z]}. Although such classes can be defined
formally, say in type theory[4,15] or in set theory, we
prefer an informal treatment which is applicable to a
variety of formalizations. The notation we use for a
class Cr over a type T is {z: T | exp} where ezp is
some expression in . We say t € {:T | ezp} for t €
T when exp holds of t. Classes over bar types such as
K are extensional collections of computations in that
two computations are considered equal exactly when
one converges iff the other does and if they converge
they converge to the same value.

3.3 Unsolvability

We say that a class is decidable when there is a (total
computable) function to determine when an element

of the underlying type belongs to the class. A simple
way to define this follows:

Definition 2 Cr is decidable iff
IfT—-2.Ve:T.z€Cr & f(z)=1€2

In the world of standard recursive function theory,
the decidable classes over N are a small subset of the
set of all subsets of N. They are at the bottom of
the Kleene hierarchy and form the lowest degree in
the classification of these sets by reducibility order-
ings. We shall see that in this theory they too form
a “small” subset of the set of all classes over N, and
more generally over any type 7.

Definition 3 Let Kr= {«:T | z|}.

Theorem 3 (Unsolvability) For all types T which
have members, say to € T, Kz is not decidable.

proof. See section 3.1 above.
qed.

The class of diverging computations is also not de-
cidable.

Definition 4 Let divKy= {2:T | z1}.

Theorem 4 For any type T with members,
divKz is not decidable.

proof. This is just like theorem 3; assume h decides
membership and look at d = fiz(Az.zero(h(z); ;o))
where tg € T.

qed.

There are other kinds of unsolvable problems. For
example, consider functions f € S — T where S and
T have members. Then the class

We_ 7={fS—>T|3y:S. f(y)|}

is not decidable. To see this, suppose it were de-
cidable. Then we could decide Kz because for each
z € T we can build an f € S — T which is the con-
stant function returning z, i.e. f is Ay.z, and we
notice that Jy: S. f(y)| iff z|. Soifh € (S—=T)—2
decides Wg_ 7 then Az.h(Ay.z) € T — 2 decides K.
We have proved:

Theorem 5 (Weak Halting) For any types S and
T with members, {f: S — T | 3z: S. f(z)]} is not
decidable.

The proof proceeded by reducing the class K= to the
class W¢_ 7. This is a general method of establishing
unsolvability, characterized by this definition.

Definition 5 Class Cs is reducible to class Cr,
written Cs < Cr, iff there is a function f € S —- T
such that Vz:S. z € Cs & f(z) € Cr.

Fact 1 < is reflezive and transitive.

When reducing to a class over a bar type, say Cg,
the reduction function f € S — T might yield a non-
terminating computation, so it is a partial function.
It seems unnatural to use partial functions for reduc-
tion, but there is no harm in this because we can
always replace them by total functions into the type
1 — T. That is, given f € S — T, replace it by
g € S—>(1—T) where g(z) = Ay.f(z), and y does not
occur free in f. This gives an equivalent total reduc-
tion because t € C > Az.t € C,_7 the “dummy”
lambda abstraction serves to stop computation.

Rice’s theorem summarizes the unsolvability re-
sults by characterizing the decidable classes of com-
putations over any bar type in a strong way. In this
setting, Rice’s theorem says that all decidable classes
of computations are trivial.

Definition 6 For any type T call a class Crp trivial
iff
(Vz:T.z € Cr) V (Vz: T. =~(z € Cr)).

Theorem 6 (Rice) For all types T, Cy is decidable
iff C is trivial
proof. (<) This follows directly, for Az.1 charac-
terizes the maximal class, and Az.0 characterizes the
minimal (empty) one.
(=) suppose f € T — 2 decides Cy. Since f is total,
we know that f(1) = 0 or f(1) = 1; we show for the
case f(1) = 0 that the class must be minimal, and for
f(1) = 1 that it must be maximal.
case f(1) = 0: We show C is trivial by showing it is
minimal, i.e. V&: T. f(t) = 0. Let ¢t € T be arbitrary.
We may show f(t) = 0 arguing by contradiction be-
cause the equality is decidable. So, assume f(t) # 0.
divK= may then be shown to be decidable using the
function

h=Xz.f(z;t) €T — 2.

For h to characterize div Kz means h(z) =0 < z1.
(=) h(z) = 0 implies f(z;t) = 0. Supposing z/|,
f(z;t) = f(t) = 0, but this contradicts our assump-
tion, so z1.

(«) =1 means h(z) = f(z;t) = f(1) = 0. divKxis
not decidable by theorem 4, so we have a contradic-
tion.

case f(1) = 1: We show C is maximal, i.e. Vi¢:
T. f(t) = 1. This case is similar to the previous ex-
cept that we switch the output of the reduction func-
tion h to make it

h = Az.zero(f(z;t);1;0) € T — 2.

qed.

3.4 Acceptable classes

One of the basic concepts in the study of formal lan-
guages is that of an acceptable set. For example, the
regular sets are those accepted by a finite automaton,
and the deterministic context free languages are those
accepted by deterministic pushdown automata. It is
a major result of standard recursive function theory
that the recursively enumerable sets (r.e. sets) are
exactly those accepted by Turing machines. In this
setting, an acceptable class is one whose elements can
be recognized by a partial function, precisely:

Definition 7 A class Cr is converge-acceptable
or just acceptable iff
3f:T—1. V=:T. z € Cr & f(z)]

A class Crp is diverge-acceptable iff
3 T—1. V=:T. z € Cr & f(2)1

The canonical acceptable class is Kz, and we may
show

Theorem 7 For all types T, K7 is acceptable.

proof. The accepting function f is Az.(z;0) € T—1,
which converges exactly when its argument z con-
verges.

qed.

The diverge-acceptable classes are needed to deal
with the idea of the complement of an acceptable
class. In a constructive setting, there is often no single
concept to replace the classical idea of a complement.
In classical recursion theory, complements have the
property that any subset S of N, any element of N ei-
ther lies in S or in its complement, i.e. if ~ S denotes
the complement, then Vz:N. (z € SV z €~ S). But
taken constructively this definition says that mem-
bership in S is decidable. In the case of acceptable
but not decidable classes S, we cannot in general say
that ~ S is not acceptable. The diverge-acceptable
classes serve as an analogue of a complement.

Theorem 8 For any type T with members,
div K= is diverge-acceptable.

proof. The diverge-acceptor function f is Az.(z;0) €
T-1.
qed.

We also know that div Kz is not acceptable, so div
acts like a complement. Kz is not diverge-acceptable
either.

Theorem 9 For any type T with members,
(i) Kz is not diverge-acceptable.
(i) divKx is not acceptable.

proof. For (i), suppose f diverge-accepted Kz and
to € T; define

d = fiz(Az.(f(z);t0)) € T.
d| iff d] follows directly, which is a contradiction.

The proof of (ii) is similar.
qed.

3.5 Unions and intersections

We may take unions, intersections, and negations of
classes, defined as

Definition 8

cE~ Ar iff ceT&cg Ar
c€EATUBr iff c€ ArVcé€Br
c€ ApUBr iff —(cg Ar & c & Br)
c€ArNBr iff c€ Ar & c € By

The weak union ¢ € Ar U Br is needed because it is
not always possible to form a strong union construc-
tively; that requires that we may decide which class
each term falls in.

The decidable classes over any type T are closed
under union, intersection and negation.

Theorem 10 (Decidable boolean operations)
For any type T and for any decidable classes Ar, Br

over T, the union, Ar U Br, intersection AT N B,
and complement ~ A7 are also decidable.

proof. Suppose that f4 accepts A7 and fp accepts
Br; then
Az.zero(fa(z); 1;0)

accepts ~ Arp,

Az.zero(fa(zx); zero(fB(z);0;1);1)
accepts AT U Br, and

Az.zero(fa(z); 0; zero(fB(z); 0; 1))

accepts Ar N Brp.
qed.

The acceptable classes over any type T are closed
under intersection, namely if f4 accepts Ar and fp
accepts Br, then Az.fa(z); fB(z) accepts Ar N Br.
If f4 and fp accept by divergence, then this compos-
ite function accepts the weak union Arp U Br. One
might expect the acceptable classes to be closed un-
der union as well, since in standard recursion theory
the r.e. sets are closed under union. But the stan-
dard result requires that we dovetail the computation
fa(z) with the computation fg(z). That is, we run
fa for a fixed number of steps, then fp for some num-
ber, then f4 for a fixed number of steps, then fp for
some number, then f4 again, then fg, etc., until one
of them terminates. In the theory presented so far,
this cannot be done because we do not have access
to the structure of the computation. We will discuss
this situation further in section 4.2 where we add a
new operator to the theory which captures certain as-
pects of dovetailing. So the best we can claim now
(as proved above) is:

Theorem 11 (Intersection of acceptable classes)
For any type T, the acceptable classes over T are
closed under intersection, and the diverge-acceptable
classes are closed under weak union.

3.6 Complete classes

In standard recursive function theory, a class such
as K< is complete in the sense that any acceptable
class can be reduced to it. The idea of complete-
ness has been very important and led to such notions
as complete sets for various complexity classes, e.g.,
polynominal time complete sets. Here there is also
an interesting notion of completeness.

Definition 9 Call a class Cr acceptably-complete
if Cr is acceptable and for all types S and acceptable
classes Dg, Dg is reducible to Cp, i.e. Ds < Cr.
Likewise Cr is diverge-acceptably complete if Cp is
diverge-acceptable and for all types S and diverge-
acceptable classes Dg, Dg < Crr.

Theorem 12 (Complete classes)
For all nonempty types T,

i K= is acceptably-complete and
T
(ii) div K5 is diverge-acceptably complete.

proof. (i) Let f € T — T accept K=z, and suppose
to € T and Dgs is an arbitrary acceptable class with
acceptor function g. Then, define the reduction func-
tion

m = As.(g(s);to) € S—T.

For arbitrary s € S, it must be that s € Dg < m(s) €
K=, i.e. g(s)| & f(m(s))l.

(=) g(s)l = m(s) = to, so f(m(s))] (we know
tO € K,J—.,')

(<) f(m(s))] means m(s)| since f characterizes K,
so g(s); tol, meaning g(s)|.

(ii) This proof is similar to (i).

qed.

4 A Family of Computation
Theories

We envision a family of computation theories, each
with a different basis for what constitutes computa-
tion. The basic theory of the previous section can
be extended in numerous ways; each extension gives
rise to a different collection of theorems, all exten-
sions of the basic results of the previous section. The
computational facts on which particular theorems de-
pend is an interesting issue in its own right, carving
up the mass of theorems of standard recursion theory
into smaller clusters. We will add some axioms about
uniform behavior of computations, add the ability
to dovetail and to count the steps of computations,
and add non-mathematical intensional types which
extend the scope of reasoning.

It is possible to consider an even more basic com-
putation theory where there is a Kleene least number
operator p to define partial functions instead of fiz.
All Turing computable functions are definable in this
theory, but it does not account for the self-referential
nature of computation and there are potentially no
unsolvable problems.

4.1 Uniformity Principles

There are two uniformity principles which allow func-
tions applied to diverging computations to be more
precisely characterized:

Vf:A— B. f(1)| = Va: 4. f(a)|)
VfiA— B. f(1) = Va: A. (f(a)l = al) (I

There are two justifications for these principles.
The first justification explicitly uses the computa-
tional semantics and the evaluation relation «— de-
fined therein.

Theorem 13 Semantically, I and II are true.

proof. (I) When f(1)], the argument 1 must not
have been computed, for that would mean in an ex-
tensional setting that the computation would have to

diverge. If the argument was not computed, it could
be anything, so Va: 4. f(a)|.

(II) The argument to f could not have been ignored,
because f is not a constant function. Therefore, the
argument must have been computed, so if f(a)|, al
as well.

qed.

The other justification follows if we accept
Markov’s principle, —tT = t]. These results are then
directly provable, with no need to take a semantic
viewpoint.

Theorem 14 Markov’s Principle = I & I1.

proof. (I) Take an arbitrary f € A = B, with f(1)].
Suppose f(a)! for arbitrary a € A; we will show a
contradiction. Note that a # T, because otherwise
f(a)l; and by Markov, we may thus conclude aj.
We now assert K- is diverge-acceptable. Define its
diverge-accepting function h = Az.f(z;a);0 € A—T.
We only need to show

Vt: A h(t)] & tl,
and this follows from the definition of h:
h(t)1 & f(t;a)T & —tT & ¢].

But this is a contradiction, for K is not diverge-
acceptable (theorem 9). Therefore —f(a)1, which by
Markov allows us to conclude f(a)].

(I1) Assume f(1)1 and f(a)l; we show a| by showing
—al. Suppose af; then f(a)l because a = 1, contra-
dicting our assumption.

qed.

A strong characterization of the acceptable classes
over bar types may now be given. Accepting functions
f € T—T are required to map equal computations to
the same result, and we show below that this means
all nontrivial classes must be complete.

Definition 10 Cr is strongly nontrivial &
Jte:T.to € Cp & —Vt:T.t € Cp

Theorem 15 (acceptability characterization)

Cx is acceptable &
Cx is strongly nontrivial =
Cx is acceptably-complete .

proof. Cz is acceptable means that for all ¢, the
acceptor function fc(T)| < t € Gz Also, by the
nontriviality assumption ¢y € Cz-

We may assert fo(1)1: if fc(1)!, then by I we
have Vt: T. fc(t)], contradicting the nontriviality of
Cz tol then follows by II

We next show Cz is acceptably-complete. Let Dg
be an arbitrary acceptable class, with an accepting
function fp € § — 1. It must be that Ds <X Cr.
Let m be At.(fp(t);to) € S — T. For m to be the
reduction function it must satisfy

Vt:S. fo(t)| & fo(m(t))l.

(=) Suppose fp(t)l; then (fp(t);to) = to, so
fe(m(t)) = fe(fp(t);to) = fe(to), which converges
because o € Cx.

(«=) suppose fc(fp(t);to)l; by uniformity II, that
means fp(t);tol, so fp(t)].

qed. .

Using Rice’s theorem (theorem 6), we may prove

Corollary 1 For all types T, C is acceptable =
Cx is decidable vl C is acceptably-complete

proof. For acceptable C, this is equivalent to proving
=C is decidable = ——C is acceptably-complete .

By theorem 15, we have

——-C is strongly nontrivial =
——=C' is acceptably-complete ,

and the corollary will thus follow from
—C s decidable = —~—C is strongly nontrivial .
We prove this by proving
=C is decidable = —C is trivial
and
=C is trivial = —~—~C is strongly nontrivial ,

both of which follow by straightforward propositional
reasoning.
ged.

4.2 Dovetailing Computations

In the basic theory, there is no possibility of dove-
tailing computations. In standard recursion theory,
two computations may be dovetailed with the aid of
a universal machine, but this theory is not endowed
with such a machine, so we directly add dovetailing.
We define the dovetailing constructor al|b to simulta-
neously compute a and b.

LA v B is a classical disjunction, ~(—A & =B).

Definition 11 Define a new computation relation

v X t which has all of the clauses of figure 1, and
with the additional clause

v«ll—allbﬁvLaVvib.

The computation relation X is not a function: 1 I

1/|2, and 2 &L 1/|2. Such multivalued terms make no
sense inhabiting our existing types, so we redefine v«—
t as a deterministic restriction of the above relation:

Definition 12 Redefine v —t as follows:

vt iﬁv«"—t&\/v'.v’ <"—t=>v’ isv.
Redefine t| as:

t] iff Jo. v L g,

The type system over this computation system is then
defined as in definition 1. It is possible to dovetail
computations where one or both may have no value
at all; this is reflected in

Fact 2 a||be T if
a€T&bET & (al &b| = a is bd).

A more liberal use of parallelism would be allowed if
there were types which could have multivalued terms
as inhabitants.

With dovetailing, we may enlarge our collection
of acceptable classes. Most importantly, acceptable
classes are now provably closed under union.

Theorem 16 Cr is acceptable &
Dy is acceptable = C1 U Dt is acceptable .

proof. The accepting function for Cpr U Dr is
Az.fo(z)|fp(z) €T — 1.
qed.
By a similar argument, diverge-acceptable classes can
be shown to be closed under intersection.

Using fixpoints, it is possible to dovetail infinitely
many computations.

Theorem 17 {g:N—N | 3n:N.g(n)|} is acceptable.
proof. The accepting function is
Ag.fix(Ah.Az.g(2); 0||h(z + 1))(0) e (N = N) —» T

which computes to

(9(0); 0)[1(9(1); 0)lI(g(2); O . -

This computation terminates just in case g(n) termi-
nates for some n.
qed.

In standard recursion theory, if a class is acceptable
and diverge-acceptable, it is also decidable, because

we compute both and know one or the other will halt
for any element of the domain. This does not follow
constructively because it is impossible to say that one
or the other will halt. It is however provable using
Markov’s principle:

Theorem 18 Markov’s principle implies
Cr is acceptable &
Cr is diverge-acceptable = Cr is decidable .

proof. Suppose f accepts C , and g diverge-accepts
C. Then define the following function to dovetail the
two:

r=Az.(f(z);1)l|(9(z);0) €T —2

Before proceeding, we check to make sure r is of the
indicated type. For arbitrary z, we wish to show
(f(=); 1)||(g(=); 0) € 2. Using fact 2 above, we only
need to show

(f(=); 1)1 & (9(=); 0)1 = (f(2); 1) = (9(=); 0) € 2

But, the antecedent will never be true, for then f(z)
and g(z) would both converge by Markov, but that
means £ € C and ¢ ¢ C, a contradiction. If r is
to decide C, r must be total. By Markov, we only
need to show that for arbitrary z, r does not diverge.
Suppose r(z)1; then, by the definition of ||, (f(z); 1)1
and (g(z);0)1, meaning z ¢ C and —~(z ¢ C), a con-
tradiction. Thus, r € T — 2. It is easy to see that r
in fact decides C.

qed.

4.3 Measuring Computations

Terminating computations are generally accepted to
be composed of a finite number of discrete steps.
However, there is nothing in the basic theory which
asserts this finiteness. Many results about computa-
tions hinge on their finite nature, and it is therefore
worthwhile to extend the theory to explicitly assert
finiteness. To constructively assert that each termi-
nating computation is finite is to assert that it has
some finite step count n. We must also assert that
this step count is unique, which all but restricts the
computation system to being deterministic. In the
computational semantics this gives rise to a three-
place evaluation relation.

Definition 13
Define the following evaluation relations:
v & tiff tevaluates to v in n or fewer steps
tniff vt
e iff -tln.
«— is then redefined as
ve—tiff In.vt

The type system is defined as in definition 1, us-
ing this new notion of evaluation. The computation
theory is now non-extensional, because computations
have a property besides their value, their step count,
and terms with equal values may have differing step
counts. Such computation systems are said to be in-
tensional. Since the step counts constructively exist,
we may add a term to the computation system to
count steps. Such a counter would diverge if the com-
putation diverged, so instead we add a more powerful
total term:

Definition 14 Eztend the definition of computation
in figure 1 by adding the following clauses:

0 — comp(t)(n) & t1"
1 — comp(t)(n) < t|".

Fact 3 We may characterize comp by

(3n:N.1 « comp(t)(n)) < t].

With comp, we have enough power to define a de-
terministic dovetailing constructor, ||

Definition 15 al]b =

fizr(Ad.An.zero(comp(a)(n);
zero(comp(b)(n); d(n + 1);b);
a))(0)

This function returns whichever of a or b first termi-
nates.

It is now possible to prove some classes which do
not involve bar types are unsolvable:

Definition 16
V={fiN—-N|3n:N. f(n) =1€ N}
divV = {f{ N> N |Va:N. f(n) = 1 € N}.

It is easy to show

Fact 4
V is acceptable and divV is diverge-acceptable .

More importantly, we may prove

Theorem 19 V is not decidable.

proof. Suppose V was decidable, with a decision
function s € (N — N) — 2. We may then construct
h € N — 2 to solve the halting problem:

h = Az.s(An.comp(z)(n)).
We assert

Vz:N.z| & h(z) = 1€ 2.

(=) Suppose z|. We wish to show h(z) = 1, which
by definition means s(An.comp(z)(n)) = 1, which in
turn means In:N. comp(z)(n) = 1 € N. This follows
directly from fact 3.

(<) Suppose h(z) = 1, meaning In:N. comp(z)(n) =
1 €N, so z|.

qed.

The intensional nature of comp opposes the exten-
sional nature of functions in this theory, which greatly
restricts the class of functions that may use comp. For
example, we may not show K < V, because the ex-
pected reduction m = Az.An.comp(z)(n) is not in the
type N — (N — N). This is because z =y € N does
not mean z and y have an equal number of computa-
tion steps, so m(z) might be different from m(y).

4.4 Intensional types

To get around the shortcomings of a strongly exten-
sional type system, a new type constructor i-7 is
added to the theory of the previous section. This
strips whatever mathematical equality there was off
of T, so that only identical terms are equal in i-T.
Equality for i-types is an algorithmic, and not math-
ematical, equality. Semantically,

Definition 17 Add the following clause to definition
1, the inductive definition of s=t€ T:
if T is i-A, then s ist and s € A.

The members of i-A — B are intensional operations
from A to B, for equal members of A do not have to
be mapped to equal members of B.

Fact 5 The type i-A — B may be characterized by
Az.b € i-A — B iff Va: A. bla/z] € B.

proof. This follows directly from the semantic defi-
nitions.
qed.

Intensional analogues of decidability, acceptability,
and diverge-acceptability may be defined, using op-
erations instead of functions to characterize them.

Definition 18
Cr is i-decidable iff
Af:i-T—-2.Ve:T.2 € Cr & f(z)=1€ 2
Cr is i-acceptable iff
3f:i-T>1.Vz:T.z € Cr & f(z)!
Cr is i-diverge-acceptable iff
3f:i-T->1.Vz:T.z € Cr & f(z)!

f € A— B implies f € i-A — B, so the i-classes
include all standard classes.

10

An intensional notion of reducibility may also be
defined, again by using operators instead of functions.

Definition 19 Cs =<; Cr iff there is a function f €
i-S — T such that Vz:S. © € Cs & f(z) € Cr.

This relation is reflexive and transitive. i-
completeness is defined as being complete i-
acceptable (diverge-acceptable) with respect to <;.
In this intensional setting, we may now show V is
i-acceptably-complete, by showing Ky <; V.
Theorem 20 V is i-acceptably-complete.
proof. To show KN =<; V, define the reduction func-
tion

m = Az.(An.comp(z)(n)) € i-N — (N — N)

Operations need not respect the equality of elements
in N, so m is of the indicated type. For arbitrary
z € N, we need to show z € Kﬁ iff m(z) € V, ie.
z| iff In: N. comp(z)(n) = 1 € N. This follows im-
mediately from fact 3.

qed.

The class of total functions from N to N can now
be shown to lie strictly above K and divK.

Definition 20 Tot, the class of total functions, is
{f:N— N |Vn:N. f(n)]}

Theorem 21 Tot lies above both Kz and divKx:
(i) Kz =i Tot
(ii) divKz =; Tot

proof. (i) The reduction function is Az.(An.z) €

T— (N—-N).

(ii) The reduction function is

m = Az.(An.zero{ comp(z)(n); 0; 1)) € i-T—(N—N).

For arbitrary z € T, =z € divKz iff z1 iff Vn:
N. comp(z)(n) = 0 iff Vn: N. zero(comp(z)(n); 1;1)]
iff Yn: N. m(z)(n)] iff m(z) € Tot.

qed.

Theorem 22

(i) TotA; KT

(ii) TotZA; divKx
proof. (i) Suppose Tot X; Kz divKz =<; Tot by the
above, but the transitivity of <; gives div Kz <X; Kz,
contradicting theorem 9.
(ii) This case is similar to (i).
qed.

Without an intensional reducibility ordering, Tot
cannot be placed above div Kz. The reducibility or-
dering of standard recursion theory is also intensional,
so is more like <; than the mathematical reducibility
<.

5 Related Work

Abstract recursion theory is a rich area of research,
with many varied approaches to be found, some of
them related to our work (for a review, see [9]). How-
ever, all postulate the indexability of computations,
which leads to the universal machine and S—m-n the-
orems. We mention here two different approaches.

Wagner[22] has developed an algebraic account of
computability, the Uniformly Reflezive Structure, or
URS. This theory was elaborated and extended by
Strong [21], Friedman[10}, and Barendregt[2]. This
theory is essentially a theory of combinators with an
if-theh construct to compare terms and an explicit
diverging element *. From this, the universal machine
and S-m-n theorems may be proven.

Another account which has more resemblance
to this work is Platek’s inductive definability ap-
proach to recursion theory[17], further expounded by
Feferman[11] and Moschovakis[16]. In this typed the-
ory, types are interpreted as sets, and functions are
taken to be partial maps from sets to sets which are
monotone; monotonicity guarantees that the class of
functions will be closed under fixpoints, which means
that a rich class of computations much like the ones of
this paper may be interpreted to lie in this structure.

Beyond this initial point, their approach com-
pletely diverges from that of this paper. Recursion
theory cannot be carried out in a setting where func-
tions are interpreted as sets, for there is no struc-
ture to the computations: all functions with the same
input-output behavior are identified. They thus pro-
ceed by considering conditions under which enumer-
ations will in fact exist, and under such conditions
can prove the universal machine and S—-m-n theo-
rems. This approach is more ad hoc than we would
like a foundational theory to be.

6 Conclusions

The constructive recursive function theory (CRFT)
of this paper is quite different from classical basic re-
cursive function theory (BRFT). Most importantly,
BRFT assumes an indexing of all partial recursive
functions, which allows the universal machine theo-
rem to be proven. It also uses Church’s thesis to
confer absoluteness and relevance to the results. In
CRFT it is the fixpoint principle, a more directly self-
referential fact than the universal machine theorem,
which leads to unsolvable problems. The fixpoint
principle gives basic unsolvability results, and each
additional assumption gives rise to another collection
of theorems, as our results demonstrate.

11

Type theory is a natural setting for recursion the-
ory; its generality gives an absoluteness and relevance
to the results. The results generalize to types such as
ordinals, trees, infinite lists, and real numbers, with-
out the need to build new theories for each type.

CRFT also impacts type theory because the types
cannot now be given purely classical interpretations:
if A — B were all set-theoretic functions from A to
B U {1}, fixpoints could not exist for all functions.
The concept of partial function in CRFT thus serves
to distinguish classical from constructive type theory
in a way different from the presence or absence of
the law of excluded middle. In a type theory such
as Nuprl[4] where mathematical propositions can be
represented via types, the excluded middle law itself
is inconsistent in the presence of partial types: if we
had a method of determining for all propositions P
whether P were true or false, we could use this to
show some term ¢ either halts or doesn’t, which con-
tradicts the unsolvability of the halting problem.

Acknowledgements

We would like to thank Elizabeth Maxwell for her
cheerful patience in preparing this manuscript and
learning IATEX. We also appreciate the insightful
comments of Stuart Allen and David Basin in dis-
cussions of this work.

References

[1] Stuart F. Allen, A Non-Type-Theoretic Seman-
tics for Type-Theoretic Language. Doctoral Dis-
sertation, Computer Science Department, Cornell
University, 1987. Also as Computer Science De-
partment Technical Report, TR 87-866. Cornell
University, Ithaca, NY, 1987.

[2] Henk Barendregt, Normed Uniformly Reflexive

Structures. In Lambda-calculus and Computer Sci-

ence Theory, Lecture notes in Computer Science,

vol. 37, 1975, pages 272-286.

[3] David Basin, An Environment for Automated
Reasoning about Partial Functions. To appear at

CADE-9, Argonne, Illinois, May 1988.

[4] Robert L. Constable et. al., Implementing Mathe-
matics with the Nuprl Proof Development System.
Prentice-Hall, 1986.

[5] Robert L. Constable and Scott Fraser Smith,
Partial Objects in Constructive Type Theory. In
Symposium on Logic in Computer Science, 1987,
pages 183-193.

[6] Robert L. Constable, A Constructive Theory
of Recursive Functions. Computer Science Depart-
ment Technical Report, TR 73-186. Cornell Uni-

versity, Ithaca, NY, 1973.

[7] Thierry Coquand and Gerard Huet, Construc-
tions: A Higher Order Proof System for Mecha-
nizing Mathematics. EUROCAL 85, Linz, Austria,
April 1985.

[8] M. Davis (editor), The Undecidable. Raven Press,
Hewlett, N.Y. 1965.

[9] A. P. Ershov, Abstract Computability on Ab-
stract Structures. In Algorithms in Modern Math
and Computer Science, Lecture Notes in Computer
Science, Vol. 122. Springer—Verlag, New York,
1981, pages 397-420.

[10] Harvey Friedman, Axiomatic Recursive Function
Theory. In Logic Colloguium ’69, North-Holland,
Amsterdam, 1974, pages 385-404.

[11] Solomon Feferman, Inductive schemata and
recursively continuous functionals. In Logic Col-
loguium ’76, North-Holland, Amsterdam, 1977,
pages 373-392.

[12] J. Y. Girard, Une extension de ’interpretation
de Godel a ’analyse, et son application a
I’elimination des coupures dans Panalyse et la the-
orie des types. In 2nd Scandinavian Logic Sympo-
sium, J. E. Fenstad, ed. North-Holland, Amster-
dam, 1971, pages 63-92.

[13] Stephen C. Kleene. Introduction to Metamath-
ematics. Van Nostrand, Princeton, NJ, 1952.

[14] Stephen C. Kleene, Recursive Functionals and
Quantifiers of Finite Type 1. Trans. Amer. Math.
Soc. vol. 91 (1959), pages 1-52.

[15] Per Martin-Lof, Constructive Mathematics and
Computer Programming. In Sixth International
Congress for Logic, Methodology, and Philoso-
phy of Science. North—-Holland, Amsterdam, 1982,
pages 153-175.

[16] Yiannis N. Moschovakis, Abstract recursion as
a foundation for the theory of algorithms. Com-
putation and proof theory (Aachen, 1983), Lecture
notes in Mathematics, vol. 1104. Springer-Verlag,
New York, 1984, pages 289-364.

[17] Richard A. Platek, Foundations of Recursion
Theory, Doctoral Dissertation, Stanford Univer-
sity, 1966.

12

[18] H. Rogers, Jr., Theory of Recursive Functions
and Effective Computability. McGraw-Hill, New
York, 1967.

[19] Scott F. Smith, Partial objects in type the-
ory, Doctoral dissertation, Cornell University, May
1988 (expected).

[20] Robert I. Soare, Recursively Enumerable Sets
and Degrees. Springer-Verlag, New York, 1987.

[21] H. Ray Strong, Algebraically Generalized Re-
cursive Function Theory. IBM J. Res. Devel. vol.
12, 1968, pages 465—475.

[22] Eric G. Wagner, Uniformly Reflexive Structures:
On the nature of Godelizations and Relative Com-
putability. Trans. Amer. Math. Soc., v. 144 (1969),
pages 1-41.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif

